REV LTR	DESCRIPTION	DATE	APPVD.
A	Para. 6, Changed Frequency Accuracy Options to Overall Frequency Accuracy Options that include 5 year aging. Deleted Model XD83H, Updated Pages 8 & 9, Added Paras. 3.8, 3.9 & 3.10. Revised Para. 3.7.4	7/05/22	MLG
В	Added Reduced QCI Models on Page 1	8/20/22	SPG

XSIS XD83S SERIES

(XD83S-Nx, XD83S-Lx)

LVDS OSCILLATORS

FOR SPACE & HI-REL APPLICATIONS

75 MHz to 200 MHz

(5 x 7 mm, Straight Leads, Thru-Hole, 2.5V & 3.3V)

(Refer to Page 5 for Reduced QCI Models XD83E, XD83B & XD83P)

REV STATUS	REV																
OF SHEETS	SHEET NO.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
APPROVALS	DATE	XSIS ELECTRONICS, INC.															
PREP. N. Gupta	5/15/23	12620 W. 63 rd Street, Shawnee, KS 66216 USA															
ENG. M. Gupta	5/15/23	XD83S SERIES LVDS OSCILLATORS															
Q. A. S. Gupta	5/15/23	FSC NO. DWG. NO.															
CUST. ENG.		57051 XD83S															
CUST Q A.		SCA	LE			Ν	1/A		;	SHE	ET		1	OF	9		

1. SCOPE:

XD83S, LVDS series, high reliability hybrid microcircuit crystal oscillators are designed, produced and tested by Xsis Electronics, Inc. as MIL-PRF-55310, Class "S" equivalent devices for use in advanced industrial, military, avionics and space applications. These devices are of hybrid microcircuit technology conforming to MIL-PRF-55310, Type 1, Class 2 oscillators.

- 1.1 ALTERNATE MODELS: Models **XD83E**, **XD83B** and **XD83P** with reduced QCI and/or reduced screening and shorter lead times are also offered as explained on page 5.
- 2. APPLICABLE DOCUMENTS:

MIL-PRF-55310F	Oscillator, Crystal Controlled, General Specifications for
MIL-PRF-38534K	Hybrid Microcircuits, General Specifications for
MIL-STD-883L	Test Methods and Procedures for Microelectronics

- 3. REQUIREMENTS:
- 3.1 General: The individual item requirements shall be as specified herein.
- 3.2 Package: Ceramic, 90% Min. Al₂O₃, Weight 0.4 g Max., Thermal Resistance, θ_{JC}: 40°C / Watt.
- 3.2.1 Lead Material & finish: Kovar, 50 to 85 micro-inches gold over 100 to 250 micro-inches nickel. Hot Solder tinning with Sn63/Pb37 solder per MIL-PRF-55310 is optional at an additional cost.
- 3.2.3 Reflow Soldering: Reflow soldering at 260°C for 10 seconds shall not degrade the performance.
- 3.3 Hermeticity: Resistance welded, hermetically sealed, leak rate of $1 \times (10)^{-8}$ atm-cc/s Max.
- 3.4 Marking: As a minimum, the parts shall be marked with Xsis P/N, ESD symbol, date code and serial number.
- 3.5 Absolute Maximum Ratings: Unless otherwise specified, absolute maximum ratings shall be as follows:

Supply Voltage	-0.5 to +4.5 VDC
Operating Free-Air Temperature Range	-55°C to +125°C
Storage Temperature	-55°C to +125°C

- 3.6 Electrical Characteristics: See Table I
- 3.6.1 Total Dose Radiation: Hybrid Microcircuit Crystal Oscillators shall be capable of meeting the electrical characteristics of Para. 3.6 after being exposed to total ionizing dose radiation of 100 krads as per MIL-STD-883, method 1019.
- 3.7 Hybrid Elements:
- 3.7.1 Quartz Crystals: High grade cultured quartz crystal shall be used. As an option, Xsis will use premium Q swept quartz crystal at an additional charge, refer to part numbering example in paragraph 6 to specify swept quartz crystal. Crystal element evaluation shall be in accordance with MIL-PRF-55310.
- 3.7.2 Crystal Mounting: Crystal element shall be mounted at 4 points in such a manner as to provide adequate ruggedness and performance under extreme environments specified herein.
- 3.7.3 Passive Elements: Established Reliability (ER) QPL components, failure level R minimum shall be used or element lot evaluation shall be as per MIL-PRF-55310, class S, or MIL-PRF-38534, Appendix C, Class K as applicable.

XSIS ELECTRONICS, INC.	FSC NO.	DWO	G. NO.		REV
12620 W. 63 rd St., Shawnee, KS 66216 USA	57051		X	D83S	В
Tel: 913-631-0448 e-mail: xsis@xsis.com website: www.xsis.com	SCALE N/A	-	SHEET	2 OF 9	

- 3.7.4 The microcircuit die shall be from lots that have passed the element evaluation per MIL-PRF-38534, Level K. In addition, ionizing radiation testing shall be performed at the oscillator level as explained in paragraph 3.7.5 herein.
- 3.7.5 The Microcircuit die shall be from wafer lots that have been successfully tested in the oscillator for ionizing radiation up to 100 krads. Xsis Electronics has also performed SET & SEL on the microcircuit die. The die is SEL immune for LET of up to 95 Mev-cm²/mg. Test reports are available on request.
- 3.7.6 Workmanship: Rework and Process controls shall be in accordance with the requirements of MIL-PRF-55310 & MIL-PRF-38534 as applicable.
- 3.7.7 Lot Traceability: Production lot for these oscillators shall be homogenous. Each element used in the production lot shall be traceable to a single lot. Swept quartz shall be traceable to the quartz bar, and its applicable processing details.
- 3.7.8 Prohibited Materials: The following items shall not be used in these oscillators: Pure Tin (Sn >97%), Cadmium, Zinc, Mercury, Selenium, Silver as under plate. Gold Plating without a nickel barrier.
- 3.7.9 Element Derating: All active and passive elements shall be derated in accordance with the applicable hybrid microcircuit requirements of MIL-STD-975. Elements shall not operate in access of derated values.
- 3.7.10 Material Outgassing: All materials shall meet a TML of 1% Max. and a CVCM of 0.1% Max., when tested in accordance with ASTM E595.
- 4. QUALITY ASSURANCE PROVISIONS: The quality assurance provisions shall be as specified herein.
- 4.1 100% Screening: The 100% screening shall be performed as per Table II. In addition, MIL-PRF-38534 Group B Option 1 in-line inspection for bond strength and die shear shall be performed at pre-seal inspection. PDA requirements for nondestructive bond pull and burn-in shall be as specified below.
- 4.2 PDA for Nondestruct Bond Pull: Unless otherwise specified, PDA shall be 2% of total number of wires or 1 wire whichever is greater.
- 4.3 PDA for Burn-in: Unless otherwise specified, PDA for burn-in shall be 2% or 1 oscillator whichever is greater and shall be applicable to +23°C to +25°C static tests only. In addition Delta Calculation shall be performed after Burn-in and shall count for PDA. All measured values for Delta Calculation shall be recorded. Parts that exceed the specified delta limits shall be rejected and be counted for PDA. Delta Calculation shall be performed at 2.5 VDC or 3.3 VDC, as applicable, for the following parameters:

Input Current	10% change Maximum
Output High Level	10% change Maximum
Output Low Level	10% change Maximum

- 4.4 Group A inspection shall be in accordance with MIL-PRF-55310 for product level S.
- 4.5 Group B inspection (30 day aging) shall be in accordance with MIL-PRF-55310 for product level S. In order to expedite delivery, by customer request, the aging test can be ended after 15 days if the amount of frequency aging is less than 50% of the 30 day specification limit.
- 4.6 Oscillators shall be capable of meeting group C inspection per MIL-PRF-55310. Generic group C inspection data on similar parts may be used to satisfy this requirement. When specified by the Customer, Xsis Electronics will perform Group C testing at an additional charge.

XSIS ELECTRONICS, INC.	FSC NO.	DWG. NO.	REV
12620 W. 63 rd St., Shawnee, KS 66216 USA	57051	XD83S	В
Tel: 913-631-0448 e-mail: xsis@xsis.com website: www.xsis.com	SCALE N/A	SHEET 3 OF 9	

4.7 Inspection and Test Data: Unless otherwise specified in the purchase order, the following Inspection and test data documentation shall be supplied with the parts.

(See Page 5 for the description of the Model Numbers other than XD83S)

Model XD83S:

Certificate of Conformance Summary of Screening Test Results per Table II PDA Calculations for Non-Destruct Bond Pull and Burn-in Summary of Elements Lot Traceability Electrical Tests before and after Burn-in Group A Inspection Summary Group B (30 day Aging) Data Radiographic Inspection Certificate

Model XD83E:

Certificate of Conformance Summary of Screening Test Results per Table III Summary of Elements Lot Traceability Group A Inspection Summary Radiographic Inspection Certificate.

Model XD83B:

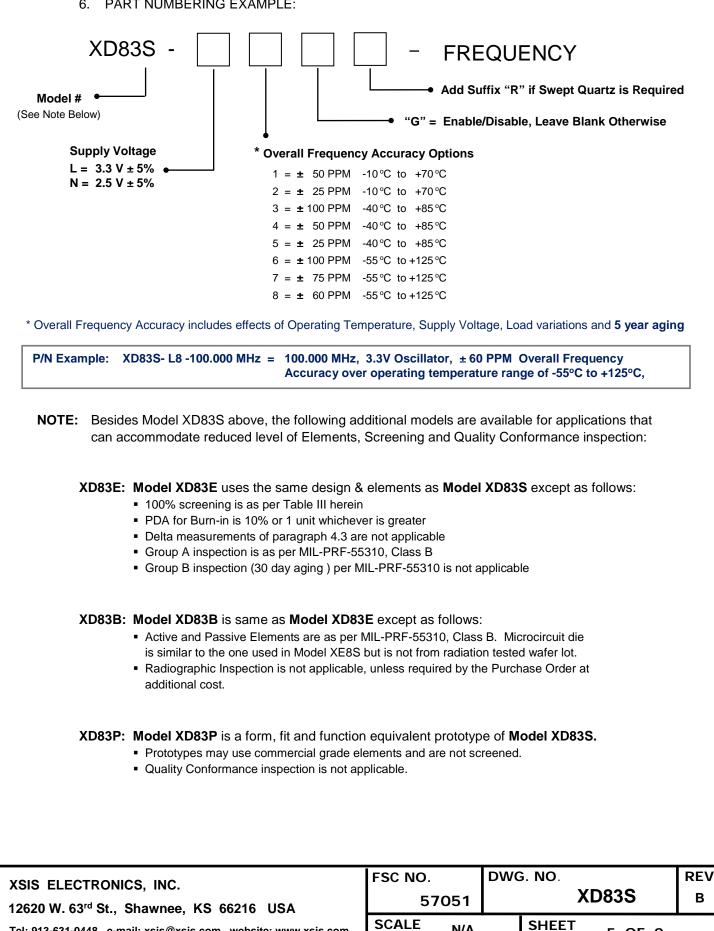
Certificate of Conformance Summary of Screening Test Results per Table III Group A Inspection Summary Radiographic Inspection Certificate, if required by the Purchase Order, at additional cost

Model XD83P:

Certificate of Conformance

4.8 The following test and inspection options are available at customer request, at additional cost.

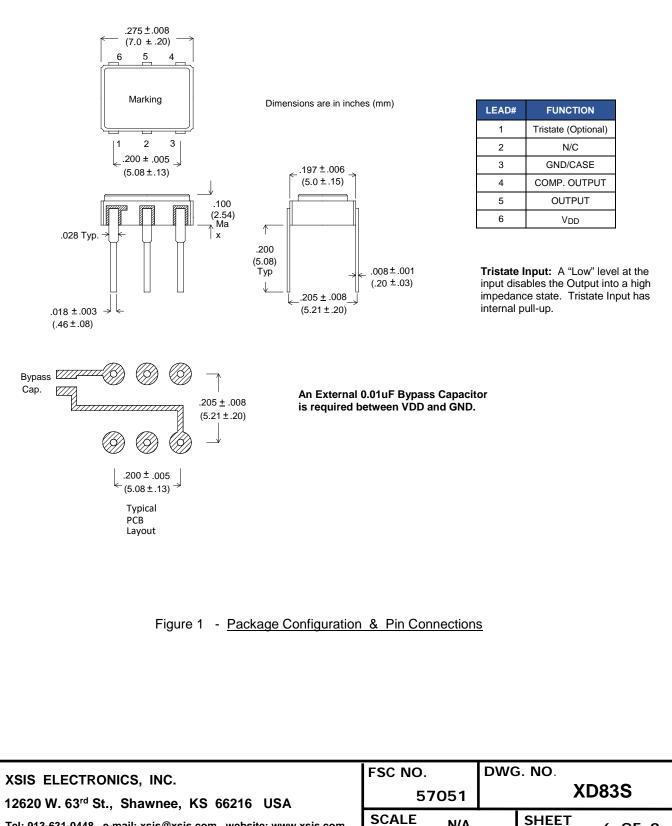
Customer Source Inspection for Pre-Cap and Final Group C Inspection per MIL-PRF-55310 on 4 or 8 units DPA (Destructive Physical Analysis) Life Test per MIL-STD-883, Method 1005, 1000 Hrs. at +125°C MIL-PRF-38534, Group B Inspection MIL-PRF-38534, Group C Inspection


5.0 PRESERVATION, PACKAGING AND PACKING:

The oscillators shall be clean, dry and packaged in a manner to provide adequate protection against electrostatic discharge, corrosion, deterioration and physical damage during shipment.

XSIS ELECTRONICS, INC.	FSC NO.	DWG. NO.	REV
12620 W. 63 rd St., Shawnee, KS 66216 USA	57051	XD83S	В
Tel: 913-631-0448 e-mail: xsis@xsis.com website: www.xsis.com	SCALE N/A	SHEET 4 OF 9	

6. PART NUMBERING EXAMPLE:


Tel: 913-631-0448 e-mail: xsis@xsis.com website: www.xsis.com

N/A

5 OF 9

7. PACKAGE OUTLINE:

Tel: 913-631-0448 e-mail: xsis@xsis.com website: www.xsis.com

SHEET 6 OF 9

N/A

REV

В

Table I Electrical Characteristics for 2.5 V & 3.3V

Parameter	Spec. Limits				
Frequency Range	75 MHz to 200 MHz				
Overall Frequency Accuracy 1/	See Options in Paragraph 6.0				
Operating Temperature Range	See Options in Paragraph 6.0				
Supply Voltage	See Options in Paragraph 6.0				
Input Current (No Load)	65 mA Max.				
Output Waveform	Square Wave				
Output Duty Cycle	55/45% Max				
Output Load	100 ohm across outputs				
High Output Level	1.45V typical, 1.60 V Max.				
Low Output Level	1.10V typical, 0.90 V Min.				
Differential Output Voltage (Peak to Peak)	340 mV typical, 247 mV Min., 454 mV Max.				
Offset Voltage	1.25 V typical, 1.125 V Min., 1.375 V Max.				
Offset Error	50 mV Max.				
Rise & Fall Times (20% to 80% Levels)	600 pS Max. over -55°C to +105°C 700 pS Max. over +105°C to +125°C				
Tristate Input	> 0.7 Vdd or Open: Normal Output< 0.3 Vdd: High Impedance				
Start-up Time	10 mS Max.				
Phase Jitter	0.3 pS rms typ, (10 KHz to 20 MHz Integrated)				
Frequency Aging @ 70ºC ≤ 150 MHz > 150 MHz	± 1.5 PPM Max./30 days ± 5 PPM Max. first year, ± 2 PPM Max/year thereafter ± 2.0 PPM Max./30 days ± 6 PPM Max. first year, ± 2.5 PPM Max/year thereafter				

<u>1</u>/ Frequency Accuracy with reference to nominal frequency includes initial accuracy at 25° C, $\pm 5\%$ Supply Voltage and $\pm 10\%$ load variations and **5 year aging**.

Contact Xsis Engineering for any other special requirements.

XSIS ELECTRONICS, INC.	FSC NO.	DWG. NO.	REV
12620 W. 63 rd St., Shawnee, KS 66216 USA	57051	XD83S	В
Tel: 913-631-0448 e-mail: xsis@xsis.com website: www.xsis.com	SCALE N/A	SHEET 7 OF 9	

Test - Inspection	Test Method – Condition
Nondestructive Bond Pull	MIL-STD-883, Method 2023
Internal Visual	MIL-STD-883, Method 2017, Level S
Stabilization Bake (Prior to Seal) <u>1</u> /	MIL-STD-883, Method 1008, Condition C(+150°C) 48 hours minimum
Random Vibration	MIL-STD-883, Method 2026, Condition I- B
Thermal Shock	MIL-STD-883, Method 1011, Condition A
Temperature Cycling	MIL-STD-883, Method 1010, Condition C
Constant Acceleration	MIL-STD-883, Method 2001, Condition A Y1 axis only (5000 G)
Seal (Fine and Gross Leak) $\underline{2}$ /	MIL-PRF-55310, Para. 4.8.2.2.3
Particle Impact Noise Detection (PIND)	MIL-STD-883, Method 2020, Condition A
Radiographic Inspection	MIL-STD-883, Method 2012, Class S
Pre Burn-in Electrical Tests: Record as applicable	Refer to Table II-a below
Burn-in	+125°C, Nominal Supply Voltage and Burn-in load 320 Hours Minimum
Post Burn-in Electrical Tests: Record as applicable	Refer to Table II-a below
External Visual	MIL-STD-883, Method 2009

Table II - Model XD83S Screening (100%)

<u>1</u>/ Vacuum bake and maintain oscillators in dry nitrogen per MIL-PRF-55310.

2/ Fine & Gross leak test is also performed per MIL-PRF-55310, Para. 4.8.2.2 after lead forming operations.

Table II-a – Pre & Post Burn-in Electrical Tests

Test Parameter	MIL-PRF-55310 Method	Pre Bl 24 ± 1°C	Post BI 24 ± 1°C	Post BI Low Temp	Post Bl High Temp
Input Current	4.8.5	\checkmark	\checkmark	\checkmark	\checkmark
Output Frequency	4.8.6	\checkmark	\checkmark	\checkmark	\checkmark
Frequency Vs. Temperature Stability	4.8.10.1	\checkmark	\checkmark	\checkmark	\checkmark
Frequency Vs. Supply Voltage	4.8.14	\checkmark	\checkmark	\checkmark	\checkmark
Output Voltage Levels	4.8.21.3	\checkmark	\checkmark	\checkmark	\checkmark
Output Rise & Fall Times	4.8.22	\checkmark	\checkmark	\checkmark	\checkmark
Output Duty Cycle	4.8.23	\checkmark	\checkmark	\checkmark	\checkmark
Start-up time	4.8.29	\checkmark	\checkmark	\checkmark	\checkmark
Tristate, if applicable	4.8.28	\checkmark	\checkmark	\checkmark	\checkmark

XSIS ELECTRONICS, INC.	FSC NO.	DWG. NO.	REV
12620 W. 63 rd St., Shawnee, KS 66216 USA	57051	XD83S	В
Tel: 913-631-0448 e-mail: xsis@xsis.com website: www.xsis.com	SCALE N/A	SHEET 8 OF 9	

Table III - Models XD83E & XD83B, Screening (100%)
--

Test - Inspection	Test Method – Condition
Nondestructive Bond Pull	MIL-STD-883, Method 2023
Internal Visual	MIL-STD-883, Method 2017, Level B
Stabilization Bake (Prior to Seal) $1/$	MIL-STD-883, Method 1008, Condition C(+150°C) 24 hours minimum
Temperature Cycling	MIL-STD-883, Method 1010, Condition B
Constant Acceleration	MIL-STD-883, Method 2001, Condition A Y1 axis only (5000 G)
Seal (Fine and Gross Leak)	MIL-PRF-55310, Para. 4.8.2.2.2
Particle Impact Noise Detection (PIND)	MIL-STD-883, Method 2020, Condition A
Radiographic Inspection (Model XD83E Only) 2/	MIL-STD-883, Method 2012, Class S
Pre Burn-in Electrical Tests: Verify all measurements	Refer to Table III-a below
Burn-in	+125°C, Nominal Supply Voltage and Burn-in load 160 Hours Minimum
Post Burn-in Electrical Tests: Verify all measurements	Refer to Table III-a below
External Visual	MIL-STD-883, Method 2009

1/ Vacuum bake and maintain oscillators in dry nitrogen per MIL-PRF-55310

2/ Radiographic Inspection is applicable to Model XD83E only

Table III-a - Pre & Post Burn-in Electrical Tests

Test Parameter	MIL-PRF-55310 Method	Pre Bl 24 ± 1ºC	Post BI 24 ± 1°C	Post BI Low Temp	Post Bl High Temp
Input Current	4.8.5	\checkmark	\checkmark	\checkmark	\checkmark
Output Frequency	4.8.6	\checkmark	\checkmark	\checkmark	\checkmark
Frequency Vs. Temperature Stability	4.8.10.1	\checkmark	\checkmark	\checkmark	\checkmark
Frequency Vs. Supply Voltage	4.8.14	\checkmark	\checkmark	\checkmark	\checkmark
Output Voltage Levels	4.8.21.3	\checkmark	\checkmark	\checkmark	\checkmark
Output Rise & Fall Times	4.8.22	\checkmark	\checkmark	\checkmark	\checkmark
Output Duty Cycle	4.8.23	\checkmark	\checkmark	\checkmark	\checkmark
Start-up time	4.8.29	\checkmark	\checkmark	\checkmark	\checkmark
Tristate, if applicable	4.8.28	\checkmark	\checkmark	\checkmark	\checkmark

XSIS ELECTRONICS, INC.	FSC NO.	DWG. NO.	REV
12620 W. 63 rd St., Shawnee, KS 66216 USA	57051	XD83S	В
Tel: 913-631-0448 e-mail: xsis@xsis.com website: www.xsis.com	SCALE N/A	SHEET 9 OF 9	